Introduction

Kirchhoff-Love model [1]:

- Developed in 1888 by Love using assumptions proposed by Kirchhoff
- One of the most common dimensionally-reduced models of a thin linearly elastic plate
- Analytical solutions are available only to a limited number of cases with simple specifications [2]

Chladni's patterns [3]:

- Show the nodal lines, where no vertical displacements occurred, of the different natural modes of vibration - Natural mode: a pattern of motion in which all parts of the system move sinusoidally with the same frequency and
- with a fixed phase relation
- Plate resonates at the natural frequencies

Formulation

Kirchhoff-Love theory's assumptions

- The plate is thin
- The displacements and rotations are small
- Transverse shear strains are neglected
- The transverse normal stress is negligible compared to the other stress components
- **Governing Equations:** $\rho h \ddot{w}(t, x, y) = -\mathcal{K} w(t, x, y) \mathcal{B} \dot{w}(t, x, y) + f(t, x, y)$

	Operators	Description	Parameters	D
	$\mathcal{K} = K_0 I - T\nabla^2 + D\nabla^4$	Time-invariant, symmetric	h	Constant thic
		differential operator	ho	Density
	$\mathcal{B} = K_1 I - T_1 \nabla^2$	Damping operator	K_0	Linear stiffne
	$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$	Laplacian operator	T	Tension coef
			D	Bending stiff
	$\nabla^4 = \frac{\partial^4}{\partial m^4} + 2\frac{\partial^4}{\partial m^2 m u^2} + \frac{\partial^4}{\partial u^4}$	Biharmonic operator	ν	Poisson's rat
	$Ox^2 Ox^2 xy^2 Oy^2$		K_1	Linear damp
			T_1	Visco-elastic

Boundary & Initial Conditions

Boundary Conditions

We consider the following three common types of physical boundary conditions for a plate: • Clamped: w(t, x, y) = 0, $(\partial^2 w \quad \partial^2 w)$

• Simply Supported:
• Free:

$$w(t, x, y) = 0, \quad -D\left(\frac{\partial^2 w}{\partial n^2} + \nu \frac{\partial^2 w}{\partial t^2}\right)(t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, x, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial^2 w}{\partial n^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial}{\partial n}\frac{\partial^2 w}{\partial t^2} + (2 - \nu)\frac{\partial^2 w}{\partial t^2}\right](t, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial}{\partial n}\frac{\partial}{\partial t^2} + (2 - \nu)\frac{\partial}{\partial t^2}\right](t, y) = 0, \quad -D\frac{\partial}{\partial n}\left[\frac{\partial}{\partial t^2}\frac{\partial}{\partial t^2} + (2 - \nu)\frac{\partial}{\partial t^2}\frac{\partial}{\partial t^2}\right](t, y) = 0, \quad -D\frac{\partial}{\partial t}\left[\frac{\partial}{\partial t^2}\frac{\partial}{\partial t^2}\right](t, y) = 0, \quad -D\frac{\partial}{\partial t}\left[\frac{\partial}{\partial t^2}\frac{\partial}{\partial t^2}\frac{\partial}{\partial t^2}\frac{\partial}{\partial t^2}\right](t, y) = 0, \quad -D\frac{\partial}{\partial t}\left[\frac{\partial}{\partial t^2}\frac{\partial}{\partial t^2}\frac{\partial}$$

Initial Conditions: $w(0, x, y) = \alpha(x, y), \quad \dot{w}(0, x, y) = \beta(x, y),$ for given functions $\alpha(x, y)$ and $\beta(x, y)$

Numerical Method

Centered finite difference approximation for spatial discretization For time integration

- Explicit predictor-corrector time-stepping method:
- Predictor: Leapfrog (LF) or Adams-Bashforth (AB2); Corrector: Adams-Moulton (AM2) • Implicit Newmark-Beta (NB) method: for $\beta = 1/4$ and $\gamma = 1/2$, the NB method is second order accurate and
- unconditionally stable

Time-step Determination

Half super-ellipse to approximate the region of absolute stability:

$$\frac{\mathfrak{E}(z)}{a}\Big|^n + \left|\frac{\mathfrak{F}(z)}{b}\right|^n \le 1, \qquad \mathfrak{R}$$

where $\Re(z)$, $\Im(z)$ are real and imaginary parts of z, respectively. Stable time step:

$$\Delta t = \frac{C_{\mathsf{cfl}}}{\left(\left|\frac{\Re(\hat{\lambda}_M)}{a}\right|^n + \left|\frac{\Im(\hat{\lambda}_M)}{b}\right|\right)}$$

where $C_{cfl} \leq 1$ is the Courant-Friedrichs-Lewy (CFL) number and

$$\hat{\lambda}_{M} = \begin{cases} -\frac{\hat{\mathcal{B}}_{M}}{2} \pm i \sqrt{\hat{\mathcal{K}}_{M} - \left(\frac{\hat{\mathcal{B}}_{M}}{2}\right)^{2}}, & \text{if} \\ -\hat{\mathcal{B}}_{M}, & \text{if} \end{cases}$$

For NB: C_{cfl} can be taken as big as 100

A stable and accurate algorithm for a generalized Kirchhoff-Love plate model

Duong T. A. Nguyen^{1,†}, Longfei Li^{1,†}

¹Department of Mathematics, University of Louisiana at Lafayette [†]Research supported by the Louisiana Board of Regents Support Fund under contract No. LEQSF(2018-21)-RD-A-23

