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Introduction
Kirchhoff-Love model [1]:

- Developed in 1888 by Love using assumptions proposed by Kirchhoff
- One of the most common dimensionally-reduced models of a thin linearly elastic plate
- Analytical solutions are available only to a limited number of cases with simple specifications [2]

Chladni’s patterns [3]:
- Show the nodal lines, where no vertical displacements occurred, of the different natural modes of vibration
- Natural mode: a pattern of motion in which all parts of the system move sinusoidally with the same frequency and

with a fixed phase relation
- Plate resonates at the natural frequencies

Formulation
Kirchhoff-Love theory’s assumptions
• The plate is thin
• The displacements and rotations are small
• Transverse shear strains are neglected
• The transverse normal stress is negligible compared to the other stress components

Governing Equations: ρhẅ(t, x, y) = −Kw(t, x, y)− Bẇ(t, x, y) + f(t, x, y)

Operators Description

K = K0I − T∇2 +D∇4 Time-invariant, symmetric
differential operator

B = K1I − T1∇2 Damping operator
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Biharmonic operator

Parameters Description

h Constant thickness
ρ Density
K0 Linear stiffness coefficient
T Tension coefficient
D Bending stiffness
ν Poisson’s ratio
K1 Linear damping coefficient
T1 Visco-elastic damping coefficient

Boundary & Initial Conditions
Boundary Conditions
We consider the following three common types of physical boundary conditions for a plate:

• Clamped: w(t, x, y) = 0,
∂w

∂n
(t, x, y) = 0

• Simply Supported: w(t, x, y) = 0, −D
(
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(t, x, y) = 0
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Initial Conditions: w(0, x, y) = α(x, y), ẇ(0, x, y) = β(x, y), for given functions α(x, y) and β(x, y)

Numerical Method
Centered finite difference approximation for spatial discretization
For time integration
• Explicit predictor-corrector time-stepping method:

Predictor: Leapfrog (LF) or Adams-Bashforth (AB2); Corrector: Adams-Moulton (AM2)
• Implicit Newmark-Beta (NB) method: for β = 1/4 and γ = 1/2, the NB method is second order accurate and

unconditionally stable

Time-step Determination
LF+AM2
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Approximation
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a = 1, b = 1.3, n = 1.5
AB2+AM2

-2 -1 0 1 2

Re(z)

-2

-1

0

1

2

Im
(z

)

Approximation

AB2

AB2+AM2

a = 1.75, b = 1.2, n = 1.5

Region of absolute stability

Half super-ellipse to approximate the region of absolute stability:∣∣∣∣<(z)

a

∣∣∣∣n +

∣∣∣∣=(z)

b

∣∣∣∣n ≤ 1, <(z) ≤ 0,

where <(z), =(z) are real and imaginary parts of z, respectively.
Stable time step:
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where Ccfl ≤ 1 is the Courant-Friedrichs-Lewy (CFL) number and
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For NB: Ccfl can be taken as big as 100

Results I: Method of Manufactured Solution
Manufactured solution: we(t, x, y) = sin4 (2πx) sin4 (2πy) cos(2πt)

Material properties: ρh = 1,K0 = 2, T = 1, D = 0.01,K1 = 5, T1 = 0.1, ν = 0.1

Forcing term: f(t, x, y) = ρh
∂2we

∂t2
+K0we − T∆we +D∆2we +K1

∂we

∂t
− T1∆

∂we

∂t
Initial conditions: w(0, x, y) = 0, ẇ(0, x, y) = 0

Square Plate

Numerical solution Error (Clamped BC) Error (Simply supported BC) Error (Free BC)

LF+AM2 AB2+AM2 NB

Annular Plate

Numerical solution Error (Clamped BC) Error (Simply supported BC) Error (Free BC)

LF+AM2 AB2+AM2 NB

Results II: Standing Waves and Nodal Lines
• Free vibration: f(t, x, y) = 0, w(0, x, y) = φ(x, y), ẇ(0, x, y) = 0

• Force vibration: f(t, x, y) = F0 cos(Ωt)δ(x−x0,y−y0), w(0, x, y) = 0, ẇ(0, x, y) = 0

(x0, y0) : center of the plate

Ω and φ(x, y) : eigenvalue and eigenvector of the eigenvalue problem
(
K0I − T∇2 +D∇4

)
φ(x, y) = λφ(x, y)

1. Simply Supported BC
Material properties: ρh = 1,K0 = 0, T = 0, D = 2,K1 = 0, T1 = 0, ν = 0.1

(Rectangular plate) Eigenvector: φ(x, y) = sin
mπx

a
sin

nπy

b
, eigenvalue: fmn =

(
m2
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+
n2

b2

)√
D̄π2

4ρ̄h̄
,m, n = 1, 2, ...

Nodal line plots from the solution of the eigenvalue problem using the eigs function in MATLAB:

Contour plots of the simulations using NB (free vibration):

Frequency 2.1736 Frequency 3.4451 m = 2, n = 1 m = 3, n = 2

Results II: Standing Waves and Nodal Lines
2. Clamped BC:
Material properties: ρh = 1,K0 = 2, T = 1, D = 0.01,K1 = 0, T1 = 0, ν = 0.1, F0 = 108

Nodal line plots from the solution of the eigenvalue problem using the eigs function in MATLAB:

Contour plots of the simulations using NB:

Frequency 121.7183 Frequency 143.655

Free vibration

Frequency 79.0282 Frequency 100.5374

Forced vibration

3. Free BC:
Material properties (Aluminum): ρ = 2700, h = 0.001,K0 = 0, T = 0, E = 69,K1 = 0.1, T1 = 5, ν = 0.33, F0 = 108

The center of the plate is clamped.
Experimetal results [4]:

Simulated results using NB (force vibration):

Frequency f1 = 560.5412 Frequency f2 = 912.9099 Frequency f6 = 2037.2532 Frequency f10 = 3159.832

Conclusion
• A sequence of benchmark problems with increasing complexity are con-

sidered to demonstrate the numerical properties of the algorithm
• Mesh refinement study, with the method of manufactured solutions, veri-

fies the stability, accuracy and second order convergence
• NB is more time-efficient than the explicit predictor-corrector schemes
• Nodal lines, natural mode shapes and frequencies obtained through free

and forced vibrations match the expected and experimental results [4]
LF+AM2 AB2+AM2 NB+AM2 NB
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Future Directions
• Extend current research to more complicated geometries
• Couple the developed plate solver with an existing fluid solver to simulate more interesting fluid-structure interaction

(FSI) problems, such as blood flow in an artery
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