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ABSTRACT

In this paper, we study the distributed optimization problem for a system of agents
embedded in time-varying directed communication networks. Each agent has its own
cost function and agents cooperate to determine the global decision that minimizes
the summation of all individual cost functions. We consider the so-called push-pull
gradient-based algorithm (termed as AB/Push-Pull) which employs both row- and
column-stochastic weights simultaneously to track the optimal decision and the gra-
dient of the global cost while ensuring consensus and optimality. We show that the
algorithm converges linearly to the optimal solution over a time-varying directed net-
work for a constant stepsize when the agent’s cost function is smooth and strongly
convex. The linear convergence of the method has been shown in Saadatniaki et al.
(2020), where the multi-step consensus contraction parameters for row- and column-
stochastic mixing matrices are not directly related to the underlying graph structure,
and the explicit range for the stepsize value is not provided. With respect to Saadat-
niaki et al. (2020), the novelty of this work is twofold: (1) we establish the one-step
consensus contraction for both row- and column-stochastic mixing matrices with the
contraction parameters given explicitly in terms of the graph diameter and other
graph properties; and (2) we provide explicit upper bounds for the stepsize value
in terms of the properties of the cost functions, the mixing matrices, and the graph
connectivity structure.
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1. Introduction

We consider a system of n agents embedded in a communication network with the
goal to collaboratively solve the following minimization problem:

1 n

i == , 1

min - f(z) n;fz(x% (1)
1=

where each function f; : R? — R represents the cost function of agent i, is strongly

convex and known by agent ¢ only. The strong convexity condition implies that prob-

lem (1) has a unique optimal solution. The agents want to determine the optimal
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solution by performing local computations and limited information exchange with
their local neighbors in the communication network. Decentralized and collaborative
approach is particularly appealing in large-scale, multi-agent systems with privacy
concerns and limited computation, communication, or storage capabilities. In these
scenarios, the data is collected and/or stored in a distributed manner, thus, comput-
ing tasks are distributed over all the agents and information exchange occurs only
between the agents with direct communication links. Such problems appear in many
engineering and scientific applications for example in wireless sensor networks [19],
distributed sensing [1], trajectory optimization for formation control of vehicles [27],
large-scale machine learning [29], and cooperative multi-agent systems [20].

Distributed optimization of the sum of convex functions has been of considerable
interest and many algorithms have been proposed including gradient-based methods
[7, 8, 21, 26, 35|, dual averaging methods [2], ADMM [25], and Newton methods
[6, 30]. Early works have often assumed that the underlying network is undirected
(see literature review in [5]) and most commonly require doubly stochastic or weight-
balanced [4] mixing matrices. Reference [24] uses a gradient difference structure in
the algorithm to provide the first-order method that achieves a geometric convergence
with the requirement of symmetric weights. Based on the ADMM approach, the work
in [25] demonstrates a linear convergence while the Nesterov’s acceleration method in
reference [12] obtains convergence times that scale linearly in the number of agents.
Reference [23] investigates decentralized algorithms that take advantage of proximal
operations for the non-smooth terms. In [15, 16], stochastic variants of distributed
methods have been considered for asynchronous computations.

In many scenarios, agents communications are directed such as, for example, due
to broadcasting at different power levels, thus resulting in communications that cor-
respond to directed graphs. To cope with directed graphs, reference [28] introduces
a subgradient-push algorithm to achieve consensus among the agents on an optimal
point. The work in [9] further studies the push-sum technique for time-varying di-
rected graphs with a convergence rate of O(Int/+/t) for diminishing stepsizes. Aiming
to improve the convergence rate, algorithms ADD-OPT [33] and Push-DIGing [10]
incorporates the push-sum protocol with gradient estimation approach, and show ge-
ometric convergence for a sufficiently small step-size. The implementation of these
methods require the knowledge of agents’ out-degree in order to construct a column-
stochastic weight matrix, which is later removed in [32] and in FROST method [36].

The aforementioned push-sum based works use an independent algorithm to asymp-
totically compute the right or left eigenvectors of the weight matrix, corresponding to
the eigenvalue of 1. Thus, the resulting algorithms are nonlinear and involve additional
computation among agents. Unlike the push-sum protocol, the alternate AB/Push-Pull
methods introduced in [17, 35] use a row-stochastic matrix and a column-stochastic
matrix simultaneously to achieve a linear convergence. Recent work in [14] further ad-
dresses the challenge of noisy information exchange and shows linear convergence (in
expectation) to a neighborhood of the optimum exponentially fast, under a constant
stepsize. The analysis of AB/Push-Pull (with stochastic gradients) was shown in [34].
A variant of the method, where the stepsize « is agent dependent, has been analyzed
in [17] for the case of a static graph. All the aforementioned work on the AB/Push-Pull
methods is for a static directed graph. The AB/Push-Pull method for time-varying di-
rected graphs has been studied in [22], where a linear convergence is shown for the case
when the global objective function is smooth and strongly-convex, and the underlying
time-varying graphs have bounded connectivity. In order to facilitate privacy design,
the recent work in [31] proposes to tailor gradient methods for differentially-private



distributed optimization. The work in [3] provides a general gradient-tracking based
privacy-preserving algorithm with added randomness in optimization parameters and
shows that the added randomness has no influence on the accuracy of optimization.

In this paper, we consider AB/Push-Pull algorithm where the agent communications
are given by a sequence of time-varying directed graphs. At every time k, the agents’
updates are described by two non-negative matrices that are compliant with the con-
nectivity structure of the graph: a row-stochastic matrix for the mixing of the decision
variables (pull-step) and a column-stochastic matrix for tracking the average gradients
(push-step). We prove that the method converges to the optimal solution geometrically
fast, provided that the stepsize is small enough and the agents’ objective functions are
smooth enough. Moreover, we provide an explicit upper bound for the stepsize range
and characterize the convergence rate in terms of the problem parameters, algorithms’
parameters (weight matrices), and the underlying graphs’ connectivity structures.

A key difficulty in the analysis is imposed by the time-varying nature of the mixing
matrices. Our analysis makes use of time-varying weighted averages and time-varying
weighted norms, where the weights are defined in terms of stochastic vector sequences
associated with the mixing matrix sequences. This allows us to establish consensus
contractions per each update step for both row- and column-stochastic mixing ma-
trices. This is unlike the work in [22] that considers the AB/Push-Pull method over
time-varying graphs, where the analysis makes use of the Euclidean norms — at the
expense of relying on a multi-step consensus contraction, even when every underly-
ing graph is strongly connected. Moreover, through the use of time-varying weighted
norms and the relations of the weight matrices with the underlying graphs, we pro-
vide explicit upper bounds for the stepsize range in terms of properties of the mixing
matrices and the graphs’ connectivity structure. This is in sharp contrast with [22]
where no explicit range is provided. Also, our analysis in this paper is in contrast
with [17, 34] where the stepsize range is given in terms of the singular values of the
weight matrices, which are neither explicitly capturing the structure of the matrices
nor the underlying graph connectivity structure.

The structure of this paper is as follows. We first provide notation, introduce our
algorithm and state basic assumptions in Section 2. We present some basic results in
Section 3. We establish the convergence properties of the algorithm in Section 4 and
Section 5, and we conclude with some remarks in Section 7.

2. Notation and Terminology

Throughout the paper, all vectors are viewed as column-vectors unless stated oth-
erwise. We use (-,-) to denote the inner product, and || - || to denote the standard
Euclidean norm. We write 1 to denote the vector with all entries equal to 1, and I to
denote the identity matrix. The i-th entry of a vector u is denoted by u;, while it is de-
noted by [ug]; for a time-varying vector uy. Given a vector v, we use min(v) and max(v)
to denote the smallest and the largest entry of v, respectively, i.e., min(v) = min; v;
and max(v) = max;v;. A vector is said to be a stochastic vector if its entries are
nonnegative and sum to 1.

To denote the ij-th entry of a matrix A, we write A;;, and we write [Ay];; when the
matrix is time-dependent. For any two matrices A and B of the same dimension, we
write A < B to denote that A;; < B;; for all 7 and j. A matrix is said to be nonnegative
if all its entries are nonnegative. For a nonnegative matrix, we use min(A™") to denote
the smallest positive entry of A, i.e., min(AT) = ming;;. 4, >0y Aij- A nonnegative



matrix is said to be row-stochastic if each row entries sum to 1, and it is said to
be column-stochastic if each column entries sum to 1. In particular, if A € R™*" is
row-stochastic and B € R™"*" is column stochastic, then A1 = 1 and 1'B=1".
Given a vector a € R™ with positive entries aq, ..., a,, the a-weighted norm can be
induced in the vector space RP x .- x RP (consisting of n copies of RP), as follows:

1x[la =

n
Zai”%‘HQ for x = (z1,...,2,) E RP x -+ x RP,
i=1

When a = 1, we simply write ||x||. We also write ||x||a-1 to denote the norm induced

by the vector with entries 1/a;, i.e., ||x|a-1 = /> iy ”Zﬁ

which can be proved by using Holder’s inequality, will be useful in our analysis:

. The following relations,

el < /sy Il

IIx]| < [|x]|a-1 for all x € RP x --- x RP and a > 0 satisfying (a,1) = 1. (2b)

for all x € RP x --- x RP and a > 0, (2a)

We let [n] = {1,...,n} for an integer n > 1. A directed graph G = ([n],€) is
specified by the edge set £ C [n] x [n] of ordered pairs of nodes. Given a directed graph
G = ([n], ), the sets NP and N denote the out-neighbors and the in-neighbors of
a node i, i.e., N°W = {j | (i,7) € £} and N}* = {j | (5,4) € E}.

We say that a directed graph is strongly connected if there is a directed path from
any node to all other nodes in the graph. Given a directed path, the length of the path
is the number of edges in the path. We use the following definitions:

Definition 2.1 (Graph Diameter). The diameter of a strongly connected directed
graph G, denoted by D(G), is the length of the longest path in the collection of all
shortest directed paths connecting all ordered pairs of distinct nodes in G.

Let pj;; denote a shortest directed path from node j to node I, where j # [. A
collection P of directed paths in G is a shortest-path graph covering if p;; € P and
pi; € P for any two nodes j, | € [n], j # l. The utility of the edge (j,1) with respect to
the covering P is the number of shortest paths in P that pass through the edge (j,1).
Define K(P) as the maximum edge-utility in P taken over all edges in the graph, i.e.,
K(P) = (n%iexg Z X{(j,)ep}> Where X((jnepy is the indicator function taking value 1

I peP
when (j,1) € p and, otherwise, taking value 0. Denote by S(G) the collection of all
possible shortest-path coverings of the graph G, we have the following definition.

Definition 2.2 (Maximal Edge-Utility). For a strongly connected directed graph G =
([n], ), the maximal edge-utility is the maximum value of K(P) taken over all possible
shortest-path coverings P € S(G), i.e., K(G) = maxpesg) K(P).

2.1. AB/Push-Pull Method and Assumptions

We consider a system with n agents, and let each agent i € {1,2,...,n} have a local
copy x; € RP of the decision variable and a direction y; € RP which is an estimate of
a “global update direction”. These variables are maintained and updated over time
and at iteration k, they are denoted by :cf and yf , respectively. We present a dis-



tributed algorithm, termed AB/Push-Pull algorithm to fairly capture independent
and simultaneous developments of two closely related methods, namely the Push-Pull
method of [17] and the method proposed in [35]. We consider the AB/Push-Pull gra-
dient method over a sequence {Gy} of directed graphs, where the agents communicate
over a graph Gj at the round k of updates. At every time k, the agents updates
are described by two non-negative matrices A; and By that are compliant with the
connectivity structure of the graph Gy, i.e.,

[Agli; >0 for all j € Nib U {i}, [Agli; =0 forall j € NI U {i},  (3a)
[Bilji >0 for all j € N3t U {i}, [Bilji =0 forall j € N3 U {i}. (3b)

Moreover, each matrix A is row-stochastic and each matrix B}, is column-stochastic,
ie., Ayl =1 and 1'Bj, = 1" for all k > 0. The method works as follows: at time k,
every agent ¢ sends its vector azf and a scaled direction [By] jiyf to its out-neighbors
j € N3, while it keeps [Bliiy¥ for its own update.

Upon the information exchange step, every agent i updates as follows: for all k£ > 0,

ot =Y [Aklijef — ayf, (42)
JENTR

W= Y [Bulayt + VA - Vii(ah), (40)
JENE

where o > 0 is a stepsize. In this method, the agent i decides on the entries of A in
the ith row (for the in-neighbors j € NVjI), while the value [By);; is selected by agent
J € ;,? Each agent i initializes the updates with an arbitrary vector :1;? and with
y? =V fi(:r?), which does not require any coordination among agents. The update step
using the mixing matrix Ay is viewed as a pull-step, while the step utilizing the matrix
By, is viewed as a push-step as it is reminiscent of the push-sum consensus method.
When the matrices Ay and By, are compatible with the underlying graph Gy, (see (3a)
and (3b)), we can re-write the method (4) as follows: for all i € [n] and all k£ > 0,

n

aftl = Z[Ak]ijfﬁf — oy, (5a)
j=1

yi Tt =D Buligy) + Vi) = Viilah), (5D)
j=1

where 2z € RP is arbitrary and y? = V f;(z?). (5¢)

We analyze the convergence properties of the method under the following assumptions:

Assumption 1 (Strongly Connected Graphs). For each k, the directed graph Gy =
([n], &) is strongly connected.

Assumption 2 (Graph Compatible Ay). For each k, the matrix Ay is row-stochastic
and compatible with the graph Gy in the sense of relation (3a). Moreover, there exists
a scalar a > 0 such that min(A4;) > a for all k£ > 0.



Assumption 3 (Graph Compatible Bj). For each k, the matrix By is column-
stochastic and compatible with the graph Gy in the sense of relation (3b). Moreover,
there exists a scalar b > 0 such that min(B;") > b for all k > 0.

Assumption 4 (Lipschitz gradient). Each f; is continuously differentiable and has
L-Lipschitz continuous gradients, i.e., for some L > 0,

IV fi(z) = Vfi(u)] < Lz — ull, for all z,u € RP.

Assumption 5 (Strong convexity). The average-sum function f = %Z?zl fi is p-
strongly convex, i.e., for some p > 0,

(V)= Vf(u),z—u) > pllz —ul? for all z,u € RP.

3. Basic Results

3.1. Linear Combinations and Graphs

Certain contractive properties of the iterates produced by the method are inherited
from the use of the mixing terms Z?:ﬂAk]ij%? and z;‘zl[Bk]ijyf, and the fact that
the matrices Ay and Bj are compliant with a directed strongly connected graph Gy.
The following results will help us capture these contractive properties.

For a collection {u;, i € [n]} C RP of vectors and a collection {v;, i € [n]} C R of
scalars, we have the following relations (see Lemma 1 and Corollary 1 of [11]):

2 n n 1 n n
=D | Do villwal® - 522%’Yj||ui—uj|!2- (6)
j=1 i—1

i=1 j=1

n
E Vil
i=1

Moreover, if " ; v; = 1 holds, then we have

1 n n n n
3 ot =l =3~ (3| ()
1= =

i=1 j=1
Z%’Ui —ul| = Z%Huz T — Z% U — (Z 'ygw> , for all u € RP. (7b)
i=1 i=1 i=1 =1

We also make use of the following result.

Lemma 3.1 ([11], Lemma 2). Let G = ([n], ) be a strongly connected directed graph,
where a vector x; is associated with node i for all i € [n]. We then have

1 n n
Z [ — ao||* > D(GK(G) Z Z 2z — el
(0)eE i=lesjt1

where D(G) is the diameter of the graph G and K(G) is the maximal edge-utility in
the graph (see Definitions 2.1 and 2.2).



3.2. Implications of Stochastic Nature of Matrices Ax and By

The column stochastic property of the matrices By ensures that the sum of the y-
iterates of the method (5), at any time k, is equal to the sum of the gradients V f;(z¥),
as seen in the following lemma.

Lemma 3.2. Consider the method in (5), and assume that each By is column-
stochastic. Then, we have Y 1 y¥ = Y"1 | Vfi(zF) for all k > 0.

Proof. The proof is by the mathematical induction on k. [ |

Lemma 3.3 ([11], Lemma 3). Let Assumption 1 hold, and let {Ar} be a matriz
sequence satisfying Assumption 2. Then, there exists a sequence {¢r} of stochastic
vectors such that

Gri1ds = ¢p  forall k>0, (8)

where the entries of each ¢ are positive and have a uniform lower bound, i.e.,

[r]i >

a for all i € [n],
n

with a € (0,1) being the lower bound on the positive entries of the matrices Ay.

For the matrices By, we define the stochastic vector sequence {7} as follows:
e . 1
Tg+1 = Brmg, initialized with m = —1. 9)
n

We examine the sequence {7} in the following lemma.

Lemma 3.4. Let Assumption 1 hold and let the matriz sequence {By} satisfy As-
sumption 3. Then, the vectors m, generated by (9) are stochastic vectors such that

T

b
[Tkl > - for alli € [n] and k > 0,

where b € (0,1) is the lower bound on the positive entries of the matrices By.

Proof. We prove that each 7y, is stochastic by using the mathematical induction on k.
For k = 0, the vector my = %1 is stochastic. Suppose now the vector 7y is stochastic.
Choose any index i € [n] and consider the entry [mj1];. By the definition of 7541 in (9),
since the entries in By and 73 are nonnegative, we have [my11]; = >_5_; [Blij[mk]; > 0.
Furthermore, by summing the entries of 71, and using the facts that B, is column
stochastic and 7, is a stochastic vector, we obtain 1T7Tk+1 =1 Bym, = 177, = 1.
Thus, 711 is a stochastic vector.

To prove the lower bound result, we consider separately the case for k =0,...,n—1
and the case k > n. The bound is obviously valid for k = 0, since mg = %1. Let k be
such that 1 < k < n — 1. By the definition of m;, we have

1
T = Bk—l ...BO']TO = EBIC_I BO]-



Hence, it follows that

n

1 1
[B—1---Bol]; = - > [Be1---Bolij >

i ==
n

1 bk

Bg—1--- Bolii 2 —,
(k] [Br—1 0 i

, n
J=1

where the last inequality follows from [Bj_1--- Boli; > bF, which is valid since all
matrices By have positive diagonals with diagonal entries larger than or equal to b
(see Assumption 3). Since k < n, it follows that

v
[Tgli > — > — forall k=1,...,n—1.
n-n

Now, consider the case k > n. Using the definition of 7, we obtain
T = Bg—1-* Be—nTk—n-
We note that the matrix [Bjy_1--- Bk—y] has all entries positive as it represents di-
rected paths among the nodes in the composition of the strongly connected graphs
Gk-1,- -, Gg—pn. Moreover, every entry of [Bg_1 - - - Bi_,] is at least as large as b", i.e.,

[Bk:—l s Bkz—n]ij >bo" for all 4,5 € [n],

which follows by Assumption 3 ensuring that each B; has positive entries on links in
the graph G;, which are at least large as b. Hence, it follows that

n n
bn
[ﬂ-k]i = Z[Bk—l te Bk—n]ij [Wk—n]j > an[ﬂ-k—n]j =b" > za
j=1 j=1
where the last equality holds since 7 is a stochastic vector for all s. [ |

3.3. Contractive Property of Gradient Method

Lemma 3.5. For a p-strongly convex function F with L-Lipschitz continuous gradi-
ents, at the point x* = argmin, F'(x), we have

|z — 2" —aVF ()| < qla)||z— x| for all z and for all a with 0 < a < 2071,

where g(a) = max{|l —aul,|1 —al|} < 1.

The proof of Lemma 3.5 can be found within the proof of Theorem 3 of Chapter 1
in [13] for a twice continuously differentiable function. The result has been extended
in [18] (see Lemma 10 therein) to a more general case of a differentiable function.

4. Convergence Analysis
In this section, we specify and analyze the behavior of three quantities that are critical

components of the convergence proof of the method: the distance of a suitably defined
weighted average 2* from the solution z* of problem (1), a weighted dispersion of the



iterates xf from the weighted average #*, and a weighted dispersion of the agents’
directions yf from the sum > ; yf .

4.1. Weighted Averages of Agents’ x-variables
g g g

We define #* to be the gbk welghted averages of the iterates x produced by the
AB /Push-Pull method (5), i

n
= Z[(bk]zxf for all & > 0, (10)
i=1
where {¢r} is the sequence of stochastic vectors satisfying QSZ A = gf); (see

Lemma 3.3). In the next proposition, we establish a recursion relation for ¥, and
a relation for their distance from the optimal solution z* of problem (1).

Proposition 4.1. Let Assumptions 2-5 hold. Then, the following statements are valid:
(a) The weighted average sequence {&*} defined in (10) satisfies,

P =" —a) [opnliyf  forallk>0. (11)

(b) Let the stepsize o in method (5) be such that 0 < a < -2-, where L is the gradient
Lipschitz constant from Assumption 4. Then, we have for all k > 0,

[#5F — 2% < qr(a)||3* — 2*|| + oL D(x*, ¢1) + aS(y*, mp),

n

min(¢y)
where qi(a) = max{|1 — anmin(mg)p|, |1 — anmin(mg)L|} < 1.

Proof. (a) By the definition of #¥*! and the z-update relation given in (5a), we have

n

n n
A= o)l T =D (el > [ Akl — Oéz Prr1ivi
=1 7j=1 =1

=1

For the double-sum term, it follows that

D [dreli > _[Axliah =D (Z[¢k+1] [Ar); ) =[]zl = 2F,

i=1 j=1 j=1 \i=1 j=1

where the second equality follows by qﬁz Ak = d)Z (see Lemma 3.3), and the last
equality uses the definition of ¥, thus, establishes the desired relation in part (a).
(b) Under Assumption 5, the unique minimizer x* of f(z) over x € RP exists. By
subtracting the optimal point z* from both sides of the relation in part (a) (see (11)),
and by adding and subtracting Y"1 [¢r11]ian[m]; V f(2F), we obtain

n

Rl g =gk g Z[¢k+1]zan[ﬂk iV F(EY) + aZ Prtli ( n[m iV f(3%) yf) ‘

=1



Therefore, by the convexity of the norm and the fact that ¢, 1 is stochastic, we have

#5412 < 3l -~ anlmd T+ Y Bklilst il TS

=1 =1

By Assumption 4 and Assumption 5, the function f is u-strongly convex and has L-
Lipschitz continuous gradients. Thus, for a stepsize a satisfying a € (0 for all

i € [n], by Lemma 3.5 it follows that

2
9 n[ﬂ'k]iL )7

2% — 2% — an[mi V(&7 < g5 p(@)]|2F — ¥,

with ¢; k() = max{|1 — an[my];p|, |1 — an[my);L|}.
Let gi(a) = max{|l — anmin(mg)ul, |1 — anmin(n;)L|} < 1, using the preceding
relation with the stochasticity of ¢r41 yields

> el ="~ anlmliVF ) < 3 foeeana(@let o) < ae)ll -7l
i=1 i=1
Therefore,
135 — 2% || < qe(@)l|2* — &*[| + a D [ralillyf — nlmili V(@0 (12)
i=1

Since max(¢r4+1) < 1, to estimate the last term in (12), we factor out [my]; as follows

n n

> [bkalillyf —nlmiliV £(& H<Z\|yz—n7fk VI@E) = mli

i=1 =1

k

—nV f(z%)

(78]

We add and subtract Y, yé?, and use the triangle inequality for the norm to obtain

> s o) —nvfEh)|| < S Z i —i—Zm Z yk — nVf(a")
i=1 v i=1 —1

n n 2 n
<a | lm : Syl + (D wi—nVFER)|| < Sy )+ Z?Jz nV f(&

i=1 =1 =1

Combining the two preceding relations yields

n

> [rrlillyf — nlmdiV @) < Sy*, m)

i=1

(13)

By Lemma 3.2, Y7, yF = >°7_, V fo(2F), hence, in view of f =137 | f;, we have

n

> (Vhuah) - VHGH)

(=1

B pvfah)|| = <Z|er (zf) = Vfe(@")].

10



Since each f; has L-Lipschitz continuous gradients (by Assumption 4), it follows that

n
SLY faf-2"I<L
/=1

D(x*, ). (14)

>y —nVf(E*)
/=1

_n
min(¢x)

Substituting (13) and (14) in relation (12) gives the desired relation in part (b). m®

The condition gx(cr) < 1 of Proposition 4.1(b) holds for example when « € (0, -2-).

4.2. Weighted Dispersion of Agents’ x-variables

In this section, we define and analyze the behavior of a ¢g-weighted dispersion of the

iterates ¥, i € [n], of the method (5) from their weighted average ¥, i.e.,
n
D(x",¢1) = | D [oaljllah —2%|2  forall k>0, (15)
j=1
where the stochastic vectors ¢y satisfy d)ZHAk = gbz and x* = (2k, ... k).
The dispersion D(x*, ¢;,) can be interpreted as the ¢y-weighted norm of the differ-
ence between x* and the vector X¥ = (2*,...,4%) consisting of n-copies of i, i.e.,
D(x*, ¢x) = [|x* = %", (16)

k+1

Using the definition of ;" in (5a), we can write

n

bt = 2F —ayf, 2k = Z[Ak]ijxé?, for all ¢ € [n] and all £ > 0. (17)
j=1
Define xF+1 = (281 2k+1) and, similarly, define z* = (2F,...,2F) and y* =
(y¥,...,y¥). Then, we can write the preceding relations compactly as follows
xFH = zF — ay for all k£ > 0. (18)

We start our analysis by recalling the next lemma:

Lemma 4.2 ([11], Lemma 6). Let G = ([n], ) be a strongly connected directed graph,
and let A be an row-stochastic matrix that is compatible with the graph and has positive
diagonal entries, i.e., Aj; > 0 when j =i and (j,i) € £, and A;; = 0 otherwise. Also,
let ¢ be a stochastic vector and let ™ be a nonnegative vector such that T A= ¢ .

Let x1,...,2y, € RP be a given collection of vectors, and consider the vectors z; =
> j=1 Aijzj for alli € [n]. Then, we have

S el < 3 gyl = PR AT S for e RO
2 ill%i _j_l gty maxZ(gZ))D(G)K(G) = AR [ >

where D(G) and K(G) are the diameter and the maximal edge-utility of G, respectively.
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The relation for the dispersion D(xk, ¢r) is given in the following proposition.

Proposition 4.3. Let Assumption 1 and Assumption 2 hold. We have for all k > 0,

2
n

[Prt1)i yf—Z[qﬁkH]jy}“ )

i=1 j=1

D(x" ppi1) < e D(xXF, ) +

NE

where the scalar ¢, € (0,1) is given by ¢ = \/1 — maxz,rr(ldi:()%zréi;l;((;k) and ¢y, are the

stochastic vectors from Lemma 3.3

Proof. We define vF = (Z?Zl[qSkH}jyf, ey Z?Zl[gbkﬂ]jyf), for which we can write
the relation for the weighted averages in Proposition 4.1(a) in compact form, as follows
xF = gk — avk,

Upon subtracting the preceding relation and the compact representation of z-iterate
process in (18), we obtain

<hHL gkl gk gk, (yk _Vk) '

Taking the ¢g41-norm on both sides of the preceding relation and using the triangle
inequality and the positive scaling property of a norm, we obtain

I = &g, = 2" = X = o (v = VE) g, < 12 &gy, + ally® = VEllg,

The left hand side of the preceding relation corresponds to the dispersion
D(x*1 ¢111) (see (16)). The terms on the right hand side we write explicitly in
terms of the vector components with z¥ = Z?Zl[Ak]ijx;‘f (see (17)), and obtain

2
n n n

D Bper) < | D [onalill=f =282+ | D [dpli |[uf =D [denliyf| - (19)

i=1 i=1 j=1

Next, we note that the vectors zF, i € [n], satisfy Lemma 4.2, with A = Ay, and

)
x; = z¥ for all i € [n]. Moreover, since we have ¢Z+1Ak = (b;; by Lemma 3.3, Lemma 4.2

applies with m = ¢p 41, ¢ = ¢ and Ty = &% which yields

Zn:[(b }sz _ i'kHQ < <1 _ min(¢k+1) a? iw ]ka _ AkHQ (20)
S = max2(¢) D(Gy)K(Gy) it ’

i=1 j=1

where we use min(A;") > a (see Assumption 2). Therefore,

n n

D rralillzf = 2012 < e, | D lenlllah — 312, (21)

=1 Jj=1

12



_ in(¢rt1) a®
where ¢y, = \/ 1 — (0, DG IKED

By recognizing the term on the right hand side of (21) corresponds to D(x*, ¢y),
and by combining estimate (21) with (19), we obtain the desired relation. ]

We conclude this section with a result establishing an estimate for ||x*+! —x*|| and
HZ?:l yf”, which will be soon used in the analysis of the behavior of the y-iterates.

Lemma 4.4. Let Assumption 1 and Assumption 2 hold. Then, for all k > 0, we have

k1 _ ok c 1 1 o Aok
e == < ( ’“\/minwm)*\/ min@k))D( Jon) +ally®ll. (22)

Additionally, if Assumption 8 and Assumption 4 hold. Then we have for all k > 0,

n
>t
i=1

< Ly (" — 2" + Dix*, 1) )

~ 'V min(¢x)
Proof. Adding and subtracting % = (2%,...,2"), we have
N e B R et

where the last inequality follows from the compact representation of x-iterate process
(see (18)) and the triangle inequality. By the relation for norms in (2a), it follows that

1 1
k+1 kH< k_Ak‘ H k:_Ak‘ k
X x| < - Z X + - X X + oy’
H mln(¢k+1) Prt1 mln(¢k) P H H
We notice that by the relation in (20), we have ||z* — x* . < g ka - fck‘ " Thus,
k+1 k

we obtain the first relation in (22) upon using the definition of D(x*, ¢;) in (15).
Now, we consider HZ?:l yf” By Lemma 3.2, we have

S (VA - sz-@c*))H,

i=1

d_ou|| =D Viiah)
i=1 i=1

where we use the fact that > | V fi(z*) = 0, which holds since z* is the solution to
problem (1). Therefore, by using the assumption that each f; has Lipschitz continuous
gradients with a Lipschitz constant L > 0, we obtain

n
D vk
i=1

Using the relation for norms in (2a), we further obtain

n
v
=1

<3 Wity - V)| < LY ek o) = Lyl - ).
=1 i=1

n
< Ly | —— % — x|, - 23
<Ly frs it s (23)

13



Applying the relation (7b) with u; = 2%, 4; = [¢x]; for all 4, and u = z* yields

n

n
k * ~k * k ~k
> [onlillef — 2| = 12" — 2> + D [onlillaf — ¥,

i=1 =1

where 2% = >}, [#x]ez. Hence,

n

n
N N ~k N
o |35 — 2|2 + Y "lulsllak — @2 < 125 -+ | D [dulillaf — 242,
k

=1 =1

k *

where the inequality in the preceding relation follows from va +b < y/a + Vb, which
is valid for any a,b > 0. Therefore, using the definition of D(x*, ¢) in (15), we have

ka — x*

o S 2% — 2*|| + D(x", o), (24)
k

from which the second desired relation follows by using (23) and (24). |

4.3. Weighted Dispersion of Scaled Agents’ y-variables

In this section, we analyze the behavior of the directions yf generated by the method
in (5). A preliminary result that establishes a basic relation corresponding to a column-
stochastic matrix B is given in the following lemma.

Lemma 4.5. Let G = ([n],€) be a strongly connected directed graph, and let B be
an n X n column-stochastic matriz that is compatible with the graph and has positive
diagonal entries, i.e., Bj; > 0 when j =i and (j,i) € £, and B;; = 0 otherwise. Also,
let v be a stochastic vector with all entries positive, i.e., v; > 0 for all i € [n], and let
the vector w be given by m = Bv. Let y1,...,yn € RP be a given collection of vectors,
and consider the vectors w; = Y% Bijy; for all i € [n]. Then, we have

2

n 2 n
E m <rT E 1% )
i—1 i=1

m
w;
— E Ye
Uy

(=1

n
Ui
DL
Y4

where the scalar T € (0,1) is given by T = \/1 — ma}r{gi(rf)(;)ﬁ?gg&))i((}), where D(G)

and K(G) are the diameter and the mazimal edge-utility of the graph G, respectively.
Proof. For any i € [n], by the definition of w;, we have

2

n 2 n
12 — Bl = B. Y5
[Jwil|* = E ijYi| = E , ijVj
— — vj
J=1 7j=1

We further expand the squared norm term by using Lemma 6 with v; = B;jv; and

14



u;j = y;/v; for all j € [n]. Hence, we obtain

Hwi||2 = <Z Bzf”ﬂ) ZBZ]V] -3 ZZBZ]V] eV

]151

. vy

Recalling the definition of , i.e., 7 = B, we have m; = Y, By, so that we have

?/j Ye
j Vg

Z Z szl/] iele

]1@1

Jwil|? = m; ZBUVJ

Since the matrix B is nonnegative and compatible with a strongly connected graph
G, and since the vector v has all positive entries, it follows that the vector m also has
all entries positive. By dividing with 7; both sides of the preceding relation, and then
by summing over all i, we obtain

n
Zﬂi_lﬂwz'HQ = ZZBUVJ
i=1

=1 j=1

y] yj Ye

Vg

-3 Z ! ZZBUV] Ve

z:l Jj=1/4=1

For the first term on the right hand side of the preceding inequality, we have that

ZZBZM = ZZBm vi sl = Z (Z%) vy HlyslI* = ZV Hlyill?,

=1 j=1 =1 j=1 7j=1 \:=1

y]

where the last equality follows since the matrix B is column-stochastic. Therefore,

n
> Hwill? = Zu-luy]rr?—fzw*ZZBzm Ve
=1

=1 /=1

2
e (25)

We note that the vector 7 is stochastic since B is column stochastic and v is a stochastic
vector. Hence,

n

D will? =3 2w
i=1 i=1

iy
=1

n
i=1

where the last relation is obtained by using relation (7b) with v =0, u; = w;/m;, and
~v; = ;. Using a similar line of arguments, since v is a stochastic vector, we obtain

S

(=1

n n
S ovitlyl? =Yy
j=1 j=1

Since B is column-stochastic, we also have Y, we = >, yp, so that by combining

15



the preceding two relations with (25), we have that

S 2SS [ Sl e s [ o
i=1 =1 j=1 J =1 i=1 j=1 ¢=1

Next, we estimate the second term on the right hand side of (26). By exchanging the
order of the summation so that the summation over ¢ is the last in the order, we obtain

2 n
Zﬂ'ilzZBngJ e 7].* ye ZZV]VE *]* (Z%lBisz‘e>
7j=1 /=1 j=1/=1 =
> Z z 212 yj (EW Bz33w>
J=11leNi®

The graph G is strongly connected implying that every node j must have a nonempty
in-neighbor set A/;". Moreover, by assumption we have that Bj; > 0 every j € [n] and

Bjy; >0 for all £ € /\/'Jln Therefore, it follows that

2 2
ZT( BZJBZg>7T B Bg>7Tj_1 (AAmin Bz-j> > <m1n7r 1)( min BU> .

] i5:B;;>0 jE€[n] J 15:B:; >0

Using the notation min(B™) = ming;.,, >0 Bij, we have

. 2 n
1 Yi e (min(B7)) My we
Z” ZZBU”J el T ZWZZ%W v w
j=1 =1 j=1teNin J
.. 92 . +1\2
> min“(v) (min(B™)) Z Y Ye (27)
max () eelvi Ve

We bound the sum Z(g,j)eg |ly; — ye||? from below by employing Lemma 3.1. By as-
sumption the graph G = ([n], ) is strongly connected, by Lemma 3.1 it follows that

> P | i

(5,0)e€ j 14=5+1 j=1 t=j

Y Y

Vj Vy

vj

where D(G) is the diameter of the graph G, and K(G) is the maximal edge-utility in
the graph G. The preceding relation and relation (27) yield

2 .2 in(B))? 1 <a & ?
) BT)" 1 Yj e
! B;jv; Bivg yj _ Y mtt (v) (min( 5 oL
Z ]z; ; 3Vj — max(7) D(G)K(G) 2 ]2; v e
min2(l/) (m1n(B+))2 l e Yi Y ?
= max?(v) max(7) D(G)K(G) 2 ; £ Vily 17] oy (28)
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To express the last term, since (v, 1) = 1, we we apply relation (7a) with v; = v; and
u; = y;/v; for all i € [n], and thus obtain

2

Dapar P |

J=1/¢=1

Z Vi

Vi

b
=1

By combining the preceding relation with inequality (28), and by substituting the
resulting lower bound back in (26), we obtain

2

2
- “ min?(v) (mim(B‘*‘))2 - Ui -
i — <|(1- i || = —
; 3 ; vl = < max2(v) max(r) D(G)K(G) Z; Vil ; ve
which yields the desired relation after taking the square roots. [ |

The third quantity that we use to capture the behavior of the AB/Push-Pull method
is the mp-weighted dispersion of the scaled vectors y¥/[mx]1, ..., yF/[7k]n, i,

n

S(y*, m.) = Z[Wk i

=1

; (29)

n 2
k
- Z Yo
/=1

where 7y, is the stochastic vector defined in (9), y¥ are the directions used in method (5)
at time k, and y* = (y¥,...,y¥). We note that S(y*, m) can also be interpreted
through the mg-induced norm in the Cartesian product space RP x - - - x RP. Specifically,
using the definition of the iterates ka (5b), we express yf“ as follows:

n

yit = wf + V@) = Vi), with wf =) [Biliyh. (30)
j=1
By defining w¥ = (w¥,...,wk) and g = (Vf1(2}),..., Vfu(2E)), we have
yHt = wh o ghtlt — gk for all k£ > 0. (31)

Viewing y**1 as the matrix with columns yf“, and similarly w* and g*, we can write

y*Hdiag ™ (mg 1) = whdiag ™ (me1a) + (8" — g")diag ™! (m41) forall k >0, (32)

where diag(u) is the diagonal matrix with the vector u entries on its diagonal. With
this alternative view of the method, we have

S(y*, mp) = ||y*diag = (mp) — ¥, with sF = (s¥,...,5%), sF = (33)

e

(]
N
~o

(=1

We provide the recursive relation for S(y*, ;) in the following proposition.
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Proposition 4.6. Let Assumptions 1-4 hold, we have for all k > 0,

Iy ot = 4| S2(v*, ) < S(y",m)

S mran) < TS (y" m) +alry |y |+ L (c’f \/min(}zbkﬂ) " \/min1(¢k) ) D, 6

Here, the scalars r, > 0 and 1, € (0,1) are given by

1 min?(7g) b2
rh= VA —e——, =4/l ,
b=V min(mg1) ’ \/ max? () max(mg41) D(Gg)K(Gy)

where ¢y, and 7y, are the stochastic vectors associated with the matrices Ay and Bjy.

Proof. Firstly, we note that under given assumptions, by Lemma 3.4 we have that
the stochastic vectors mx, k > 0, defined in (9), all have positive entries. Noting that

2
| k”Z Z ||yz ||2 Xn: 7Tk]' yf
- (2
i=1 [ﬂ-k]l
and using relation (7b) for the weighted average of vectors, where v; = [m]; and

u; = y¥/[mx); for all i, and u = 0, we obtain

n yk 2 n n 2 n 2 n 2
PR [ DB (=D DU (IS VDE IEE L ARS PIES
i=1 kli i—1 =1 =1 =1

where the last equality is obtained from the definition of S(y*, m;) (see (29)). Hence,

n

>t

(=1

"] = | S2(F, mh) <5y , ) + 7 (34)

where the inequality is obtained by using v/a + b < /a + v/b, which is valid for any
two scalars a,b > 0. Thus, we have established the first relation of the proposition.
We next proceed to show the relation for S(y**!, m.,1). By (32), we have

y*ldiag ™ (mpy1) = whdiag ™ (mpp1) + (g8 — g¥)diag ™ (mpg) for all k£ > 0.

By subtracting the vector s"1 = (s*1, ... s5+1) where s+ = S} T from
both sides of the preceding relation, we have for all £ > 0,

k+1

y* diag ™ (mp 1) =" = whdiag ™! (mpg1) =8P (" ="+ (" —g")diag T ().

By taking m;41-induced norm on both sides of the preceding equality and by using
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k+1

relation between S(y**, mr11) and the mj41-induced norm (see (33)), we have that

Sy M) = [whdiag ™ () — 85 4 (80— 85 4 (g5 - gF)diag ™ (a1l
< [[wdiag™ (1) =" [y, + 18" 8", + 11(85 —gF)diag ™ (1) - (35)

We next consider ||w¥diag™"(my1) — 8¥||x,,,, for which by using the definitions of

wh and s¥, ie., wF = (wf,...,wk) and s¥ = (s¥,..., s¥), we have that
k 1 k - wf ’
||W diag_ (ﬂ-k’-i-l) -8 ”7Tk+1 = Z[ﬂ-k—i—l}i L — sk R
[Tht1li

i=1

where s* = > oreq y}f (see (33)). We now apply Lemma 4.5 with the following identifi-
cation G = Gg, B = By, m = m11, and v = 7, which yields

n

Z [Th+1li

i=1

n

< T Z[ﬂ'k]z

i=1

Zyz

7Tk+1

with 7, = \/1 - maxz(ﬂk)mn;;n(g::l))bz e KG.: Where we use min(B;) > b. Hence,

2

=7 S(y*, 1),

n

Iwh diag ™ (miy1) — 8wy, < k| DTkl
i=1

n
-
(=1

[Wk]i

where the equality follows from the definition of S(y*,7;) in (29). Thus, by substitut-
ing the preceding relation back in (35), we have

Sy mn) < S (y* me) + 18F ="y + (88 8" diag ™ (M1 v, (36)

Next, we consider the term ||s* — s**1||;, ., in (36), for which we have

n

k_ Gk k k
I8 = 8" lms, = 4| D [meralill s+ — sH||2 = [ - ¥,
i=1

where the last equality follows since the vector w1 is stochastic. By the definition of
*in (33), we have s* = 3", y¥ . Since By is column-stochastic, by Lemma 3.2(a)
we further have Y ;_; yi = >, Vfi(zF), implying that

n

> (Vielak ™) = Vhilah)

/=1

k k
||S —S +1H7Tk+1

<Z|!sz () = Vi)l

By using the Lipschitz continuity of the gradients V f;, we obtain

K k+1 kK k k
Is* = 8" |r,.,, < LZ g™t = 2| < Ly/n|x"* —xF|. (37)
=1
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k+1 _

For the term |[|(g g¥)diag ™ (mk11)||x,,, in relation (36), we have

B — Y fi(ah))2
[7Tk:+1]z‘ '

(g

Tht1

— |V fi(z
ML gk)diagil(ﬂk+l)||7rk+1 = ||gk+1 - ng -1 = Z :
i=1

By the Lipschitz continuity property of the gradients V f;(-), we obtain

e L

k1 oFYdiag ™ (r e <L I3 < xFH_xk||. (38
H(g g ) g ( k+1)H k1 — ZZI [7Tk+1]i = min(ﬂk+1) || H ( )

Now, we combine the estimates in (37) and (38) with relation (36) and obtain that

S(y* ™ me1) < 7 Sy, m) + Leg | xF = xF|,

where rp, = \/n + % The desired relation follows from the preceding relation
min(7mg41
and the estimate for ||x**! — x*|| in Lemma 4.4 (see (22)). ]

5. Convergence Results

In this section, we combine the results obtained in Sections 4.1-4.3 to obtain a com-
posite relation for the main quantities of interest.

5.1. Composite Relation
We first give the relations in a compact form by defining the vector Vj, as follows

T

Vi = (I8 = ")l DG, ), S(3*,m0)) (39)

which we recall below for convenience:

n n k n 2
X Yj
DO, 6) = || D lonlile = a2, S(Rm) = | Sl | = S|
i=1 i=1 M=
where 2% = Y1 [¢x];zF and 2* is the solution of the problem (1). Using Proposi-

tions 4.1(c), 4.3, and 4.6, we establish a relation between Vj11 and Vj, that will involve
the constants ¢, and 73 from Proposition 4.3 and Proposition 4.6, given by

1
a) =max |1 — anmin(r , |1 —anmin(mg)L|, re = VN + ————, (40a
av(a) = ma { (raul R
L min(pxy1) a? o min?(7y,) b2
c’“‘\/ ! max2(¢k)D(Gk)K(Gk)’Tk_\/ L e (mp) max (e ) D(GRK(Gr) " 20P)

For the vector Vi we have the following result.
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Proposition 5.1. Let Assumptions 1-5 hold. Consider the iterates produced by the
AB /Push-Pull method in (5) with the stepsize a € (0,2(nL)™1), we have

Vier1 < My (o) Vg for all k > 0,
where My («) is the matriz given by
qr () aLy/npy, o
My(a) = | aLykynek e + alypy/npy Vi

L2ri/ner  Lrp(crprsr + or) + aL?rpy/ne, 7 + alry,

with vy, = \/gléf[ﬂ](([%ﬂ] (7)), or = ﬁ(%)’ and q(v), cg, T, and ry as in (40).

Proof. The first row of M («) is given by Proposition 4.1(b) when « € (0,2(nL)~1).
Next, we consider the relation for D(x**1, ¢p1). By Proposition 4.3, we have that

2
n

DML 1) < e D(xF, é1) + Z[¢k+ﬂi yr = Z[‘ﬁkﬂ]ﬂ'yﬁ? : (41)
i=1

j=1
Using relation (7b) with v; = [pg+1]i, wi = yf for all ¢ and u = 0, it follows that

2
n n 2

D (bwrli ||uf = lbrralivl || <D okl ||vi
=1 i=1

i=1 j=

By multiplying and dividing each term in the summation on the right hand side with
[7k]i, we find that

n

Z[¢k+1]i yr — Z Gry1] Jyj Z Grt1)il
7=1 =1

R R L
i=1 [k]z = ey TR — [Tk )i

Therefore, by taking the square roots on both sides of the preceding relation, we obtain

2

> [brgali Uk = [bralit|| < m?X([éka] ilmel;)

i=1 j=1 n]

3
k :5 e 1,

n
=1

where the equality follows upon using v = \/ maX e ([@r+1]5[mr];) and the definition
of ||yk\|7r;1. Substituting the preceding estimate back in relation (41), we find that,

D(ka,deH) < Ck:D(Xka br) + a’YkHkaw;l for all £ > 0.
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Using the preceding relation, the relation ||y* [ (¥", ™) +||>-7—1 v/ || established
in Proposition 4.6, and the following relation from Lemma 4.4

ilyf < L\/?(m) (Ili"“ -+ D(X'“,dm)) , (42)

we obtain the desired relation for D(x**1, ¢p,1) (given by the second row of Mj(c)).

Lastly, the relation for S(y**!,m,,1) comes from Proposition 4.6. For the quantity
ly*||, using the vector-induced norm property in (2b) and the fact that the vector 7y,
is stochastic for all k, we have |y*| < Hkaﬂ;l. Upon using the relations Hy"‘||7r;1 <

S(y*, ) + Hzgzl yﬂ| established in Proposition 4.6 and (42), we obtain

S(y*. x < (1% + aLry) S(y*, m,) + aL?r \/Tik—w*

1 1 o .
+ er <C/€\/min(¢k+l) + \/mln(¢k) +alL Hl]n(q[%)) D(X 7¢k)7

which gives the third row of My(«). ]

5.2. Convergence Result and Range for the Stepsize

From Proposition 5.1, to prove that V tends to 0 at a geometric rate, it is sufficient to
show that My () < M(«) for some matrix M («), and then choose a suitable stepsize
a € (0,2(nL)~1') such that the eigenvalues of M («) are inside the unit circle, i.e., the
spectral radius of M («) is less than 1.

We now determine an upper bound matrix M («) for My («). Let ¢ € (0,1), 7 € (0, 1),
r, and ¢, be upper bounds for cx, 7%, 7%, and ¢, respectively, i.e.,

maxcy < ¢, maxTy <7, maxry <r, maxyr < @. 43
£>0 T k>0 TE>0 ’ kzo(p v (43)

For the quantity gi(a) as in (40a), when o € (0,2(nL + nu)~t), we have qp(a) =
1 —anmin(m)p < 1. Let o be a lower bound for min(my), & > 0, corresponding to the
graph sequence {Gy}. In the most general case of graph sequences, by Lemma 3.4 we

have that o < ming>o{min(m)} with o > b% > 0. Thus, we have the following upper
bound for g (a):

<1-— 0,1 h < mi 1 . 44
maxgi(e) < 1—anop € (0.1)  where o <minfmin(m)}. (44

We notice also that v = max;cpn([¢ry1]j[mr];) < 1 since ¢x and 7 are stochastic

vectors. Using these upper-bounds, for a € (0,2(nL+nu)~1), we have My (a) < M(a),
for all k£ > 0, with the matrix M («) given by

1—anou aly/np a
M(a)=| aLyne c+ aly/ne a . (45)
aLl?ryne Lr(1+c)p + al?ryne T+ alr
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Proposition 5.2. Let Assumptions 1-5 hold. Consider the iterates produced by the
method in (5) and the notation in (43)-(44). If the stepsize a > 0 is chosen such that

(46)

agmin{ e 1-7 nop(l—7)(1-¢) 2 }

1
Ly/ng’ Lr’ n "n(L+ )
where n = L(nop+ Ly/ng) (L +c¢)ro+ (1 —c)r + (1 — 7)y/np) > 0. Then,

lim ||zF — z*|| =0, for all i€ [n].
k—o0

Proof. Recall that by Proposition 5.1, we have Vi11 < My(a)Vg, for all k& > 0.
Therefore, with the matrix M («) defined as in (45), we have

Vit1 < M(a)Vy, for all k£ > 0. (47)

Thus, ||2% — 2*||, D(x*, #1) and S(y*, m;) all converge to 0 linearly at rate O (,0’]“\/[) if
the spectral radius py;(q) of M(a) satisfies ppro) < 1. By Lemma 8 of [17], we will
have pyr(q) < 11if all diagonal entries of M (a) are less than 1 and det(I — M(a)) > 0,
where

—anop aly/ne a
det(M(a) —T) = | aly/ng c+ aly/np —1 o'
al’rynp Lr(1+c)p+al?ryng 7+ alr—1
Hence,
det(M(a) = 1) = afan — nop(l —7)(1 = )],
where n = L(nop + Ly/ng) (1 +c)re+ (1 —c)r + (1 — 7)y/np) > 0 since ¢ < 1 and

7 < 1. It remains to choose o € (0,2(nL +nu)~1) so that the following conditions are
satisfied

¢+ aLynp <1
T+alr <1
an—nopu(l —7)(1 —¢) <O0.

Solving the preceding system of inequalities yields the range in (46). [

Remark 1. We can relax Assumption 1 by considering a C-strongly-connected graph
sequence, i.e., there exists some integer, C' > 1 such that the graph with edge set
Ekc = Ul(.gglc)cfl &; is strongly connected for every £ > 0. In this case, the more
general results of Lemma 3.3 and Lemma 3.4 state that there exist stochastic vector

sequences {¢y} and {7}, such that for all &£ > 0,

Gprc (Arro-1-- App1dr) = ¢, and  mupo = (Bryo—1- - Bry1Bi) mi.
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Furthermore,

nC an
(1] > aT and  [mg); > o for all i€ [n].

With the use of these results, the rest of convergence analysis follows similarly to our
analysis for strongly connected graphs, by noticing that contractions due to row- and
column-stochastic matrices occur after time k = C.

6. Numerical Simulations

In this section, we evaluate the performance of the proposed algorithm through a
sensor fusion problem over a network, as described in [37]. The estimation problem is
given as follows

n
. 2 2
;IEHRI}, £ (sz — Hiz||* + \if|z]] ) )

where z is the unknown parameter to be estimated, H; € R**P represents the mea-
surement matrix, z; = H;x + w; € R® is the noisy observation of sensor ¢ with some
noise w; and J\; is the regularization parameter for the local cost function of sensor 3.

As in [17], we set n = 20, p = 20 and s = 1 so that each local cost function is
ill-conditioned, requiring the coordination among agents to achive fast convergence.
The measurement matrix H; is generated from a uniform distribution in the unit R$*P
space which is then normalized such that its Lipschitz constant is equal to 1. The noise
w; follows an i.i.d. Gaussian process with zero mean and unit variance N'(0,1). The
regularization parameter is chosen to be \; = 0.01, for all 7 € [n], to ensure the strong
convexity of the loss function.

—e— AB/Push-Pull a =0.35
o —#— Push-DIGing a=0.1
1071 —e— Push-DIGing a = 0.15
T
3
©
% 1072 . ) .
g Figure 1: Residuals plot
1074
0 1000 2000 3000
Iterations

We compare our proposed AB/Push-Pull algorithm against Push-DIGing [10]. The
simulation is carried out over a random sequence of time-varying directed communica-
tion network . The performance is compared in terms of the relative residual defined

l[x*—x"[|3
[[x0—x*][3 "
domly generated time-varying network. As discussed in [17], AB/Push-Pull allows for
much larger value of the stepsize compared to Push-DIGing and it converges faster

especially for ill-conditioned problems and when graphs are not well balanced.

as Figure 1 illustrates the performance of the above algorithms under a ran-
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7. Conclusions

In this paper, we study a distributed optimization problem over a time-varying directed
communication network. We consider the AB/Push-Pull gradient-based method where
each node maintains estimates of the optimal decision variable and the average gra-
dient of the agents’ objective functions. The information about the decision variable
is pushed to its neighbors, while the information about the gradients is pulled from
its neighbors using both row- and column-stochastic weights simultaneously. We ex-
plore the contractive properties of the iterates produced by the method, which are
inherited from the use of the mixing terms and the fact that the mixing matrices are
compliant with a directed strongly connected graph. We prove that the algorithm con-
verges linearly to the global minimizer for smooth and strongly convex cost functions.
The convergence result is derived based on the choice of appropriate stepsize values
for which explicit upper bounds are provided in terms of the properties of the cost
functions, the mixing matrices, and the graph connectivity structure.
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